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Semiflexible polymer in the cactus approximation
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We investigate a cactus approximation for the analysis of a lattice polymer rismiehvoiding wall in
two and three dimensions. We focus on the semiflexible model, which incorporates both an attractive short
range interaction between monomers that are nonconsecutive along the chain, and a bendir(gtéfmersy.
In agreement with Monte Carlo simulations, we find two different qualitative behaviors. In the low stiffness
regime the polymer undergoes two different transitions upon decreasing temperature: an @dowdlgpse
from a swollen(“coil” ) state to a disordered compdtglobule” ) state, and then a first-order transition to an
orientationally ordered“anisotropic”) state. In the high stiffness regime the system displays a single first-
order collapse from the coil state at high temperature to the anisotropic state at low temperature. We show that
the cactus approximation is able to recover even fine qualitative features of the phase diagram, such as the
stiffness dependence of tit® temperature, with a relatively small computational effort.
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[. INTRODUCTION assigned to corner formation. In the low stiffness regime,
upon decreasing temperature, the polymer undergoés a
Lattice Self-Avoiding Walk(SAW) models, i.e., random collapse from a swolleit“coil” ) state to a disordered com-
walks that are forbidden to visit lattice sites more than oncepact (“globule”) state, and then a first-order transition to a
are usually employed to describe linear polymers in a goodjuasifrozen ordered‘anisotropic”) state. The last one is
solvent [1,2]. Each site visited by the walk represents avery similar to the ordered state observed in the Hamiltonian
monomer (or a cluster of monomeys and the segments walk model. It is anisotropic and dense: most polymer seg-
(steps of the walk define a configuration of the polymer ments are aligned and the SAW is forced to vigitmosj all
chain[3]. A short range interaction between monomers thatattice sites(quasi-Hamiltonian walk In the high stiffness
are nonconsecutive along the chain is also generally considegime a direct first-order collapse from the coil to the an-
ered in order to model either Van der Waals attractive forcessotropic state takes place.
between monomers or the effective result of hydrophobic Apart from the relevance of the semiflexible model to
repulsion between monomers and solvemate) molecules.  describing real polymer physidsuch as ordered structure
Such interactions cause the well-kno¥ntransition from a  formation in biopolymers in this paper, we are interested in
swollen coil at high temperature to a compact globule at lowthe performance of the cactus approximation, compared to
temperaturg4,5]. different methods that have been previously employed to in-
In order to describe more complex physics, concerning/estigate this relatively simple model, whose phase diagram
for instance biological macromolecules, further details usuis presently known with some accuracy. The cactus approxi-
ally need to be included in the model. Motivated by suchmation for a given polymer model consists in approximating
interests, Bascle, Garel, and Orldqitd have tried to describe the behavior of a single SAW on an ordinary lattice by that
the formation of proteinx helices[7] in the framework of of a gas of SAWs with the same interactions on a suitable
Hamiltonian walk model{SAWs forced to visit all lattice cactus treqHusimi treg. The analysis of the latter system
siteg. They have proposed a model which assigns an energyan be performed exactf1,12. We choose a Husimi tree
cost to the formation of a corner in the walkending en- made up of squares, to approximate the two-dimensional
ergy). The latter should represent hydrogen-bond breaking ii2D) square lattice, and one made up of cubes, to approxi-
a single helical turn, giving rise to a competition betweenmate the 3D simple cubic lattice, with a connectivity con-
entropy gain and energy cost of breaking hydrogen-bondedtant equal to 2 in both cases. We work out the grand-
ordered structures. For such a model the mean-field theorganonical phase diagratohemical potential vs temperatjire
[6] predicts, upon increasing temperature, a first-order tranfor two different cases, in the low and high stiffness regimes,
sition between a quasifrozen anisotropic phase, in which theespectively. Moreover, we investigate the dilute solution
fraction of corners is very close to zero, to a molten phasésingle chain limit, reporting the polymer density and con-
with a significant fraction of corners. The model has beerfigurational entropy as a function of temperature. Finally, the
extended to the ordinary SAWhot a Hamiltonian walk  dilute solution limit is characterized in full detail by deter-
adding the usual monomer-monomer attractive energy, in omining the stiffness vs temperature and stiffness vs entropy
der to investigate the nature of the collag€d. This is phase diagrams. The former is compared to Monte Carlo
known as the semiflexible polymer model, which has beersimulations for the 3D casf9,10], showing that the cactus
studied both in the mean-field approd@&j and by means of approximation recovers a qualitatively correct phase behav-
accurate Monte Carlo simulatiofi8,10]. It turns out that a ior. Moreover, we compare our results with previously per-
single semiflexible chain in solution may have different be-formed mean-field-like investigations: the ordinary mean-
haviors, depending on stiffness, that is, on the energy codteld theory[8] and the Bethe approximatidii3,14. The
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FIG. 1. Growth procedure to
build the square cactuga) first-
generation branch;(b) second-
generation branch; (c) third-
generation branch. Binary
numerals denote different sites in
each square, according to the con-
vention explained in the text.

Bethe approximation is a classical tool of statistical mechanehemical potential is conventionally assumed to be zero. An
ics, which improves the ordinary mean-field theory, treatingenergy costy (with x>0) is taken into account for each
exactly nearest neighbor correlatidris]. It has been refor- visited site in which the polymer bends. Theparameter is a
mulated under different points of vief6-18, but is actu-  way of describing polymer stiffness, therefore, it will be re-
ally equivalent, apart from details, to the cactus approximaferred to as stiffness parameter in the following.

tion for a Cayley treq19], a special case of Husimi tree | et ys now introduce the cactus approximation. Basically
made up of nearest neighbor pairs. As far as the semiflexiblg consists in replacing the single SAW on the ordinary lattice
model is concerned, the ordinary mean-field approach do§sy, 5 gas of mutually avoiding and self-avoiding walks with
not describe satisfactorily the high stiffness regime, and doefhe same interactions on a suitable Husimi tfegctus treg

ggtpg;‘rjr'gﬁ;me ycijéfjcst goétzmzct)iggg'Ccérra:gi{t'gﬂégeh%iggertgr?]Dealing with a hypercubic lattice id dimensions, we choose
with two different regimeq13], but introduces some arti- a cactus made up ak-dimensional hypercubesd (cubes,

facts. For example, th® collapse is absolutely unaffected with a connectivity constant equal to(éa_tch site shared by 2
by stiffness. On the contrary, the cactus approximation corSj cube@s. The cactus tree may.be obtained as the resuit of a
rectly recovers also the stiffness dependence of@htem- recursive growth procedure. Figure 1 shows the growth of a

perature, which turns out to increase upon increasing stifffranch of our cactus tree for tie=2 case, which is usually
ness, in agreement with Monte Carlo simulations. referred to as square cactus. With a connectivity constant

The paper is organized as follows. In Sec. II, we describgdual to 2, the complete cactus is made up of two such
the semiflexible model in some more detail, and introducéranches. A three- or higher-dimensional cactus can be ob-
the cactus approximation, which in principle should work for t&ined by a similar procedure. _ .

a generic interacting SAW model ondedimensional hyper- The state of the system can be defined by specifying, for
cubic lattice. In Sec. Ill, we present the results, showing théach lattice site(i) whether the site is empty or visited by a
grand-canonicalchemical potential vs temperatirphase  Walk and, in the latter casgii) the chain configuration on
diagram, both in the low and high stiffness regimes, and théhat site, that is, the directions of two segmefttsvards the
dilute solution phase diagrams. 3D results are compared bofff€vious and next monomer along the chalnis then useful

to 2D ones and to previous investigations on the semiflexibld® introduce for each site a suitable state variableThe

model. Section IV is devoted to a summary of the results angorespondence between valuesradnd local(site) configu-
to some concluding remarks. rations can be chosen arbitrarily. In Table I, we report our

“encoding” for d=2. Let us notice that-=0 corresponds to

an empty site andr>0 to an occupied site. Moreovedw,

<2 denotes a “straight” segment, while>2 denotes a
Let us consider a SAW on a hypercubic latticedrdi-  “bent” segment. The encoding can be easily extended to

mensions. Each site visited by the walk represents a mono=3, so we do not report it explicitly for the latter case. Let

mer. Empty sites represent clusters of solvent molecules. Ans notice that, in order to preserve polymer connectivity, site

attractive energy-¢ (with ¢>0) is assigned to each pair of state variables have to satisfy certain constraints. Namely, if

nonconsecutive monomers placed on nearest neighbor sitasio given sites are nearest neighbors, and the configurational

According to the grand-canonical description, a chemical postate of the former is such that it is linkédot linked to the

tential u is associated to each monomer, while the solventatter by a chain segment, then also the latter site must be in

Il. THE MODEL AND THE CACTUS APPROXIMATION

TABLE |. Correspondence between local configurations and values of the site state varidbi@ .in

+ + + + + 4+

o 0 1 2 3 4 5 6
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TABLE II. Pair interaction energieg,(o,0') (@) anduy(o,o") (b) in d=2. Notice thato’ follows o along each axisti(o,0") =
[uy(o,0")=c0] corresponds to pair stateso’ that violate the connectivity constraint along théy) axis.

o’ 0 1 2 3 4 5 6

T @ (b) @ (b) (€Y (b) (€Y (b) @ (b) (@ (b) @ (b)
0 0 0 00 0 0 00 0 0 o0 0 o0 0 0 00
1 0 0 0 —€ 00 o0 o0 —€ 0 —& 0 o0 o0 o0
2 0 o0 o0 o0 —€ 0 —€ o0 0 0 0 0 —& 0
3 e [o%) 0 ) o0 0 ) ) 0 o0 0 0 o) 0
4 0 o0 o0 o0 —& 0 —& o0 e 0 e 0 —& 0
5 0 0 0 —€ —€ 0 —& —€ o0 —& 0 o —& o
6 o0 0 0 —& 0 0 0 —& 0 —& 0 e 0 0

a linked (not linked state with respect to the former. Such 11 1
condition can be imposed by assigning infinite energy pen-H({okay})= > 2 h(‘kaky)+ E ux(aoky,alky)
alties to nearest neighbor pair states that violate the connec- kky=00 ky=0

tivity constraint(infinite energies can be treated numerically 1

as vanishing Boltzmann weightsThe self-avoiding condi- + > Uy(oy 0,0% 1) Tv(000,001,010,011)-
tion is guaranteed by the set of site configuratiOfesble ), kx=0 i i

which does not include self-crossing. One more constraint to 3)

be satisfied is the absence of closed loops on edeybe of

the Husimi tree, otherwise the model would describe a mix{n the last equatiom denotes site energy terms, which take
ture of infinite length polymers and of small closed-loop into account bending energies and chemical potential contri-
molecules, with different thermodynamic properties. Also thebutions. They are defined as

last condition can be imposed by suitable infinite energy pen-

alics, P yP h(0) = xny(0) — une( o), 4

Let us now show, how we can investigate the SAW gas on

the class of cactus trees defined above. We shall take thvzc\é%erfip"(i)oa(r:m otc Ciﬁgt'%n ( r;u:mlbeortsﬁefvevfi'snee(gciﬁ((g d
square cactus as an example, then we shall see that a fosriie) wr?ile n (U)p ere “’ber(;dcirn 2 numbers definetjd as
mally equivalent method can be employed for any dimen-_" "’ b g .

. o o . np(o)=0 for o<2 (straight segment or empty sife,(o)
sion. The Hamiltoniar¥{ of the systemwhich includes in- otherwise(bent segment Normalization to the connec-
teraction energies, bending energies, chemical

bui 4 also the fictit , q zmen,t'&ﬁvity constant 2 avoids multiple counting. Moreovar, and
contributions, and also the fictitious energies needed to 'mDy represent pair interaction energies alongttendy axes,

pose the constraintsan be written as a sum over the squaresggpectively(see Table |i. They take into account also con-

in the following way: nectivity constraints, as previously mentioned. Let us notice
that the difference betwear, andu, does not correspond to
a real anisotropic interaction, but is due to the fact that site
H=, H({O'(km)}), ) states are defined with respect to a fixed reference frame.
m Finally, the four site termy takes into account that square
loops are forbidden. It is defined as(3,6,4,5),
U(O'O(),(To]_,(flo,o'll):o OtherWise.
where H({o(™}) is the contribution of themth square The thermodynamics of a cactus system can be investi-
(square Hamiltonian and gated exactly, in a numerical way, taking into account self-
similarity, that is, by solving a suitable recursion relation
[20]. First one has to define partial partition functions
(o™ ={alD oD, oD, oD} (2)  (PPF3. Let us consider a branch of our cactus tree, for in-
stance the one depicted in Fig(cl, and a corresponding
partial Hamiltonian, obtained by Eql) with the sum re-
denotes the set of state variables in the square. Notice thatricted to squares in the branch. The corresponding PPF
state variables have a double labelindicates that a vari- W(o) can be computed by summing Boltzmann weights of
able refers to a site in thenth square, whilek=k,k,  the partial Hamiltonian over the states of the branch minus
=00,01,10,11 denotes a particular site in the given squarghe base site, which is characterized by thetate variable.
Assuming that square sides have unit length and the lowedf course, the PPF tends to infinity in the thermodynamic
left vertex is placed at the origin of a reference frafeand  limit, that is, for an infinite generation branch, so it is con-
k, are vertex coordinates. The square Hamiltonian can bgenient to define a normalized PRK o) <W(o) in such a
written as way that
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TABLE lIl. Definition of reflection operatorsR, :oc—Ryo, in of the site probability distributions does not break homoge-
d=2. Notice thatR1;=R15Ro; (see the text neity, because, according to E§), the following symmetry
relationship holds:

T 0 1 2 3 4 5 6
a)=po(Ryo). 11
Rugr 0 1 ) 4 3 5 s Pr(0)=Po(Rko) (13)
Roio 0 1 2 6 5 4 3 Therefore, the probability that a site is visited by a walk,
which we shall briefly refer to adensityin the following,
can be evaluated as:
2 w(o)=1. (5) p=1—p(0), (12)

o

From symmetry arguments it is easy to see that, if the basigdependently ok. The densityp is the main order param-

site of the branch i% instead of0=00, the corresponding ete\;vforhour SgSte”.‘t-) d th : h
PPFE can be written as e have described the recursive approach for a square

cactus, that is, for thd=2 case. Nevertheless, fde= 3, we
w (o) =W(Ryo), (6) can develop a formally equivalent procedure, with the same
equations, providedk denote cube vertices, that i¥
whereR, is a “reflection” operator, which, acting on a site =000,001...,111, and the square Hamiltonian definition
configurationo, returns theR, o configuration, obtained by (3) js replaced by a suitable definition of cube Hamiltonian.
a reflection ofo- with respect to the plane orthogonal to the [ et us notice that id=3 a computer program which per-
vector. In Table IIl, we report explicit definitions of the re- forms a single iteration of the recursion relatit8) should
f!ection operators. Let us notice that the following composi-consider in principle 1%=4 294 967 296 cube configurations
tion rule holds: (16 being the number of possible site configurations, and 8
RiRir = Riokr » (7) the number of vertices in a cuhemaking the calculation .
unfeasible. This huge number can be reduced to 3 746 978, if
where ® denotes the “bit-per-bit” logical exclusive dide-  from the beginning one takes into account only configura-
fined by 000=1©1=0, 0&1=1®0=1). Let us now con- tions respecting connectivity. A suitable algorithm has been
sider again the branch depicted in Fig. 1. In the infinite genprogrammed to this purpose.
eration limit, and in the hypothesis of a homogeneous The starting values of the recursion relation represent
system, the subbranches attached to the first square of th@undary conditions on the surface of the cactus trees. More-
branch should be equivalent to main one. So the correspon@ver, the fixed point represents the bulk equilibrium state,
ing PPFs do not depend on the(squaré label, and one can and phase transitions can be detected in principle as changes

write the recursion relation of the fixed point, driven by model parameters. In this way,
one determines the actual phase behavior of a cactus system.
W —n-1 e~ BHUo) , 8 Nevertheless, it is widely believed that in the presence of
(00=g k40 ILIOWUk) ® multiple fixed points(which can be reached from different

boundary conditions that is, in the presence of coexistence

where the sum runs over state variables in the square excephenomena, the first-order transition which best approxi-
oo, B=1KT (K being the Boltzmann constant affdthe  mates that of the ordinary lattice system can be obtained by
absolute temperaturea bar denotes the bit-per-bit logical minimizing the bulk free energy densify19,20. For our
inversion(defined by G=1, 1=0), andg is a normalization system, the suitable free energy density is the excess grand
constant, imposed by E@5). The recursion relation can be potential per site» referred to pure solvent. Such a potential
iterated numerically to determine a fixed point, which repre-can be evaluated as
sents the PPF of a branch whose base site lies in the bulk of
the cactus tree. Bulk properties of the cactus system are as-
sumed to approximate the ordinary lattice system. For each
site k in a square, we can compute the probability distribu-
tion pi(o) of the corresponding state variable, by consideryyhereg is the normalization constant of the recursion rela-
ing the operation of attaching two branches to the given sit&jon (8) andz is given by Eq.(10). The derivation requires
We obtain some manipulations and is left to the Appendix. From the

-1 knowledge of the grand potential one can derive all other

Pulo)=2 Wil o)Wid o), © thermodynamic properties.

w=—KT

1 1
2d_llng—<1—2d_l)lnz}, (13

where of coursevy(o)=w(o), while
lll. THE PHASE DIAGRAMS AND THE DILUTE
z= >, W (o)Wl o) (10) SOLUTION LIMIT
[oa

In the framework of a grand-canonical description, the
provides normalization. Let us notice thaturns out to be phase diagram can be determined as a function of tempera-
independent ok, due to Eq(6). The residuak dependence ture and chemical potential. For a SAW the latter controls the

061802-4



SEMIFLEXIBLE POLYMER IN THE CACTUS APPROXIMATION PHYSICAL REVIEW E56, 061802 (2002

1.0+

xe=1

XE=5

0.5+
Q ) xe=1

We

0.0 +——F—F—"—"T—"———"1—

0 1 2 3 4
E KT/e

. FIG. 3. Density as a function of temperatuge\s KT/¢) in the

dilute solution limit ind=2 for the low (y/e=1) and high /e

=b5) stiffness cases.

xe=5

phase, the isotropic dend&D) phase, and the anisotropic
dense(AD) phase. Th& phase is characterized lpy=0 and

. »=0. Let us notice that the excess grand potential was ex-
] pected to vanish in th& phase, in which only a vanishing
fraction of sites is visited by a walk. In the remainder of the
article, we shall understand that all thermodynamic quanti-
ties are excess quantities referred to pure solvent. The ID
phase is characterized by<(<1, and corresponds to the
dense phase of the ordina® model. In the cactus approxi-

e

KT/e
FIG. 2. Chemical potential-temperatura/e vs KT/e) phase  mation, we say that the ID phase is “isotropic,” meaning that

diagram ind=2 for a low stiffness case =1, upper graphand

a high stiffness caseyx(¢=5, lower graph Solid lines denote
first-order transitions; dashed lines denote second-order transition
The zero density phase € 0) is denoted by, the isotropic dense
phase (6<p<1) by ID, and the anisotropic saturated phage (
=1) by AD.

the probability of having a straight segment is independent of
the direction, that ig.(1)=py(2). Otherwise, the system
does not possess a real invariance under 90° rotation, due to
the cactus structure itself. The AD phase is anisotropic, in the
sense thap,(1)+#py(2), andsaturated g=1), that is, it
describes a Hamiltonian walk. Most sites are occupied by
chain segments aligned to a coordinate axis. The transition
average chain length. For example, in the simPlenodel  |ine between theZ and ID phases turns out to be partially
[5] there exists a phase transition lipe=u* (T) at which  first and partially second order. The two regimes are sepa-
(for increasingu valuesg the average length either diverges rated by a tricritical point, which is an ordinay point. In
continuously(for temperatures higher than some temperaturehe dense regionp(>0) a first-order transition line separates
Te) or jumps discontinuously to infinityfor temperatures the ID and AD phases. As far as the high stiffness case is
lower thanTg). The transition line is identified as the ther- concerned, the phase diagram is reported in the lower graph
modynamic limit of an isolated chain in solution. The systemof Fig. 2. The same three phasgsID, and AD discussed
can be also described in terms of the dengityand one above are present, even if the topology of the phase diagram
obtainsp=0 for u<u*(T) andp>0 for u>u*(T). From s different. ThezZ-ID transition line is totally second order,
the dense region of the phase diagram the transition line caso the tricritical point disappears, and is replaced by a critical
be seen as the dilute solution lin{& single chain in solu- end point. This corresponds to a discontinuous collapse, in-
tion). The transition is second order fde>Tg and first order  stead of the ordinarycontinuous ® collapse.
for T<Tgq. The tricritical poin{ Tg ,u*(Tg)], known as® As previously mentioned, we are mainly interested in the
point, represents the coil-globule collapse. Let us notice thagilute solution limit, that is, in the transition between the
in our description, walks cannot terminate except on the latphase and the dense phases, because it describes a single
tice boundariegsee Table )| hence in the thermodynamic chain in solution. So we shall give more detailed results
limit polymers are infinite in length even in the zero densityabout this issue. The densip; computed in the limit ofu
phase. This is not expected to affect the phase behavior of @ending to the transition line from above, which denotes the
equilibrium system. We now present grand-canonical phasehain compactness, is reported in Fig. 3 as a function of
diagrams of the 2D semiflexible model in the cactus approxitemperature. In the high stiffnesg/e =5) case, one finds a
mation for a low stiffness case«(e =1) and a high stiffness single abrupt transition fropm=1 to p=0, upon increasing
case f/e=5), which show qualitatively different behaviors. temperature. In the lower temperature region the polymer is
Let us consider the low stiffness case first. The phasén the anisotropi¢A) compact state, while in the higher tem-
diagram is displayed in Fig. @ipper graph where the tem- perature one the polymer is in the swollen ¢@) state. The
perature variable iKT/e and the chemical potential variable low stiffness case/e=1) displays three different phases.
is ule. We find three different phases: the zero den§fty = The lowest temperature one #s like in the high stiffness

061802-5
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KT/e

FIG. 5. Stiffness-temperaturee{e vs KT/e) phase diagram in
the dilute solution limit ind=2. Solid lines denote first-order tran-
sitions; a dashed line denotes tletransition. The coil phase is

FIG. 4. Entropy per monomer as a function of temperatureyenoted by, the isotropic globule phase 1§, and the anisotropic

(s/Kp vs KT/¢g) in the dilute solution limit ind=2 for the low
(x/e=1) and high §/e=5) stiffness cases.

phase byA.

case. At some temperature the system undergoes a first-orde®t report the corresponding graphs. Rather let us notice that
transition, in which the chain becomes orientationally disor-the dilute solution behavior is in qualitative agreement with
dered, but its density does not fall down to zero. This phas&onte Carlo simulations of a single semiflexible chain on a

may be identified with the ordinary compact globylg)
observed in th@® model. Upon further increasing tempera-

3D (simple cubig lattice[9,10]. This supports the reliability
of the cactus approximation in the analysis of lattice polymer

ture, the density decreases continuously, reaching zero at &odels. On the contrary, the classical mean-field approach

ordinary ® point, after which the polymer is again in@
state.

was not able to describe the first-order collapse in the high
stiffness regim¢8]. The Bethe approximation, equivalent to

We also investigate the temperature dependence of tH&€ cactus approximation for a Cayley tree, does describe the
entropy per monomer in the dilute solution limit. It can be two regimes, but has been shown to introduce some artifacts

computed in the following way. The grand potential per sitel13]. For example, the anisotropic phase turns out to be com-

can be written as

w:f_/J’p! (14)

pletely frozen, that is, all lattice sites are occupied by straight
segments aligned to a coordinate axis, and the entropy is
rigorously zero even at finite temperature. As shown above,
the cactus approximation predicts a nonvanishing entropy,

wheref is the Helmholtz free energy per site. As previously hich suggests that it is capable of describing some degree

mentioned,w vanishes on th& phase boundary, hence in
this case,u coincides with the Helmholtz free energy per
monomer,

w="Flp, (15)
for a single chain in solution. Assuming that
pule=@o(KTle) (16)

defines theZ phase boundargwhich is known numerically,
see Fig. 2, we can derive the entropy per monomer as

slp=—Ke¢'(KTle), (17

wheree’ denotes the first derivative @f. The entropy, nor-

of (local) disorder even for the saturated phase.

In order to perform a more detailed comparison with
Monte Carlo simulation§9,10], we now systematically char-
acterize the dilute solution behavior, by investigating a con-
tinuous range of values of the stiffness parameter. Let us start
again fromd=2. Figure 5 shows the phase diagram as a
function of stiffness and temperature. The two regimes can
be easily recovered, and, quantitatively, we find the boundary
of the low stiffness regime af/e~3.29. Let us notice that,
for very low stiffness values, thA-G transition line seems
to disappear. Actually in this region the convergence of the
recursion relation is very slow, which suggests the presence
of a tricritical point and of a subsequent critical transition.
This is shown more clearly by the corresponding stiffness-

malized toK, is displayed in Fig. 4 as a function of tempera- entropy phase diagraffig. 6), where the entropies of the

ture. Let us notice that in th& state the entropy is low, but

and G phases tend to coincide, &sbecomes less and less

not zero. In the low stiffness case it jumps to a higher valueanisotropic, and structurally similar 8. Such behavior is a
in the G state, reflecting orientational disordering, then itpeculiarity of the d=2 case. Ford=3 the stiffness-
increases on increasing temperature. The slope becom&smperature phase diagram is reported in Fig. 7, together

abruptly lower at the® point. On the contrary, in the high

with the results of Monte Carlo simulation®,10]. The

stiffness regime, there is a direct jump to the high entropyqualitative agreement is good, even if, from a quantitative

value associated to the highly disordet@dtate.

point of view, the cactus approximation overestimdtesall

All the qualitative features, we have described for the twomean-field-like approximationghe stability of the more or-

regimes observed id=2 are preserved id=3, so we do

dered phase. Nevertheless, it is remarkable that the cactus
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transition. A thin solid line denotes the critical end point; a dash- FIG. 8. Stiffness entropy per monomey/Re vs s/Kp) phase
dotted line denotes the athermal lifiit-c. Tags are as in Fig. 5. diagram in the dilute solution limit id= 3. Lines and tags are as in
Double tags denote coexistence regions. Fig. 6.
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approximation is also able to reproduce, though not quanti- o ) .
tatively, the increasing trend of th@-G transition @) tem- stiffness. The semiflexible model has been already investi-

perature as a function of stifiness. As far as this issue i§ated by means of different techniques, and has been sug-
concerned, let us remind that both the classical mean-fielgested to have some relevance also in the description of
approach and the Bethe approximation predict a rigorouslpome biopolymer properties. In this paper, we have consid-
stiffness independer® temperature. Finally, Fig. 8 shows ered the performance of the cactus approximation in the
the stiffness-entropy phase diagram @b 3. It turns out to ~ analysis of such model. The method turns out to require a
be qualitatively different from the correspondidg-2 dia- reasonable computational effort also in 3D, yielding qualita-
gram, in that theA-G transition C|ear|y does not tend to tiVG'y correct results, Compared to more accurate techniques.
criticality even for vanishing stiffness, as the correspondingVoreover, it allows one to study phase diagrams and ther-
entropies are significantly different. Such a detail seems tghodynamic properties in full detail, due to relatively small
suggest that the cactus approximation is also capable of digwmerical complexity.

criminating dimension dependent effects. The model shows two qualitatively different behaviors,
depending on stiffness. For high stiffness values, a polymer
IV. CONCLUSIONS in dilute solution undergoes a first-order collapse from a

h . . d imation f latti swollen coil at high temperature to an extremely compact
We have investigated a cactus approximation for a latlice, hishropic state at low temperature. Lower stiffness values

polymer model with attractive short range interaction and;e|q 5 qualitatively different behavior. Upon increasing tem-

perature the polymer chain undergoes two phase transitions:
from the anisotropic state to an isotropic globule, and then
from globule to coil @ transition. The cactus approxima-
tion qualitatively reproduces the two different behaviors. For
both cases, we have computed the most relevant thermody-
namic functions, namely, the Helmholtz free energy and en-
tropy per monomer as a function of temperature.

We have compared our results for the dilute solution limit
with those of Monte Carlo simulations, and of other mean-
field like approximations. The classical mean-field approach
does not succeed in describing the first-order collapse at high
stiffness values. The Bethe approximation does describe two
regimes, but introduces artifacts. First of all, the anisotropic
phase turns out to be completely frozen even at finite tem-
perature, with all chain segments aligned to a privileged di-
4 rection, and zero configurational entropy. On the contrary,

KTi2e the cactus approximation predicts a nonvanishing entropy,

FIG. 7. Stiffness-temperaturey(2e vs KT/2¢) phase diagram that is, some degree of configurational disorder. Moreover,
in the dilute solution limit ind=3. Circles and squares denote both the mean-field theory and the Bethe approximation pre-
results of the Monte Carlo simulations of Rdf8,10], respectively. ~ dict a rigorously stiffness independe@t collapse tempera-
Thin lines are eye guides. Other lines and tags are as in Fig. 5. ture, while, remarkably, the cactus approximation qualitavely
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reproduces the increasing trend of the transition temperature, Wi o)
upon increasing the stiffness parameter. Finally, the 2D cac- CD:; | We(on|” (A5)

tus approximation displays a peculiarity in the anisotropic-
isptropic transition, which tends to critipality for ti very low By expanding the statistical average, the last term reads
stiffness. Therefore, the cactus approximation turns out to be
sensitive to dimensionality, while the Bethe approximation
seems to be quite insensitive, predicting an all first-order
transition line also in two dimensions.

On the basis of these results, we suggest that the cactus
approximation may be a reliable tool to get qualitative infor-Due to the fact that the sum is taken overlallone can also
mation about the thermodynamics of lattice polymer modelsWrite

<I>=§ > pdo)Inwi(a)—Inw(o)].  (AB)

APPENDIX: BULK FREE ENERGY DENSITY

®=2 > [pdo)=pd)]inw(a). (A7)
In this appendix, we explain the formula employed in the k o
text to evaluate the bulk free energy density. It is known thaﬁz EQ.(9). it i ¢ that
the contributionF of each(bulk) d cube to the total free rom Eq.(9), it is easy to see tha
energy can be written exactly §20] (

1
BF={ pH{ah)+nP{od) -5 X npow ),
(A1

where(-) denotes an ensemble average overdicebe state
variables, andP({o}) is the joint probability distribution of
such variables. Let us notice that hdredenotes a generic

whence® =0. As a consequence, EGA4) in d dimensions

reads

BF=-InZ+29 Ynz. (A9)

Let us notice thaiZ involves a sum over alt-cube state

free energy, not necessarily the Helmholtz one. It is easy tyariables, hence itis quite expensive to be computed numeri-

see that

P({ok}>=z—1e—ﬁ“<{“k”1'k[ Wil o), (A2)

where

Z:{E} e*BH({ffk})H Wil o) (A3)
oK k

provides normalization. Replacing E@2) and Eq.(9) into

Eq. (A1), and taking into account the linearity of the average

operation, one obtains

1 1
BF=—InZ+ = >, Inz+§<1>,
3

5 (A%)

where

cally for d=3. Nevertheless, making use of E¢A3), (8),
and (10), it is possible to show that

whereg is the normalization constant of the recursion rela-
tion (8), which has to be computed at each iteration. More-
over, as previously mentione#, is actually the free energy
density perd cube, related to the free energy density per site
f by

F=20"1f (A11)
(eachd cube contains @sites, but each site is shared byl2
cubes. Thus, one can finally write

Bf=— Ing+| 1—

) Inz. (A12)

2d—1 2d—l
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