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Semiflexible polymer in the cactus approximation

M. Pretti
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I-10129 Torino, Italy
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We investigate a cactus approximation for the analysis of a lattice polymer model~self-avoiding walk! in
two and three dimensions. We focus on the semiflexible model, which incorporates both an attractive short
range interaction between monomers that are nonconsecutive along the chain, and a bending energy~stiffness!.
In agreement with Monte Carlo simulations, we find two different qualitative behaviors. In the low stiffness
regime the polymer undergoes two different transitions upon decreasing temperature: an ordinaryQ collapse
from a swollen~‘‘coil’’ ! state to a disordered compact~‘‘globule’’ ! state, and then a first-order transition to an
orientationally ordered~‘‘anisotropic’’! state. In the high stiffness regime the system displays a single first-
order collapse from the coil state at high temperature to the anisotropic state at low temperature. We show that
the cactus approximation is able to recover even fine qualitative features of the phase diagram, such as the
stiffness dependence of theQ temperature, with a relatively small computational effort.

DOI: 10.1103/PhysRevE.66.061802 PACS number~s!: 61.25.Hq, 05.50.1q, 05.70.Fh, 64.60.Cn
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I. INTRODUCTION

Lattice Self-Avoiding Walk~SAW! models, i.e., random
walks that are forbidden to visit lattice sites more than on
are usually employed to describe linear polymers in a g
solvent @1,2#. Each site visited by the walk represents
monomer ~or a cluster of monomers!, and the segment
~steps! of the walk define a configuration of the polym
chain @3#. A short range interaction between monomers t
are nonconsecutive along the chain is also generally con
ered in order to model either Van der Waals attractive for
between monomers or the effective result of hydropho
repulsion between monomers and solvent~water! molecules.
Such interactions cause the well-knownQ transition from a
swollen coil at high temperature to a compact globule at l
temperature@4,5#.

In order to describe more complex physics, concern
for instance biological macromolecules, further details u
ally need to be included in the model. Motivated by su
interests, Bascle, Garel, and Orland@6# have tried to describe
the formation of proteina helices@7# in the framework of
Hamiltonian walk models~SAWs forced to visit all lattice
sites!. They have proposed a model which assigns an en
cost to the formation of a corner in the walk~bending en-
ergy!. The latter should represent hydrogen-bond breakin
a single helical turn, giving rise to a competition betwe
entropy gain and energy cost of breaking hydrogen-bon
ordered structures. For such a model the mean-field the
@6# predicts, upon increasing temperature, a first-order tr
sition between a quasifrozen anisotropic phase, in which
fraction of corners is very close to zero, to a molten ph
with a significant fraction of corners. The model has be
extended to the ordinary SAW~not a Hamiltonian walk!,
adding the usual monomer-monomer attractive energy, in
der to investigate the nature of the collapse@8#. This is
known as the semiflexible polymer model, which has be
studied both in the mean-field approach@8# and by means of
accurate Monte Carlo simulations@9,10#. It turns out that a
single semiflexible chain in solution may have different b
haviors, depending on stiffness, that is, on the energy
1063-651X/2002/66~6!/061802~9!/$20.00 66 0618
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assigned to corner formation. In the low stiffness regim
upon decreasing temperature, the polymer undergoesQ
collapse from a swollen~‘‘coil’’ ! state to a disordered com
pact ~‘‘globule’’ ! state, and then a first-order transition to
quasifrozen ordered~‘‘anisotropic’’! state. The last one is
very similar to the ordered state observed in the Hamilton
walk model. It is anisotropic and dense: most polymer s
ments are aligned and the SAW is forced to visit~almost! all
lattice sites~quasi-Hamiltonian walk!. In the high stiffness
regime a direct first-order collapse from the coil to the a
isotropic state takes place.

Apart from the relevance of the semiflexible model
describing real polymer physics~such as ordered structur
formation in biopolymers!, in this paper, we are interested
the performance of the cactus approximation, compared
different methods that have been previously employed to
vestigate this relatively simple model, whose phase diag
is presently known with some accuracy. The cactus appr
mation for a given polymer model consists in approximati
the behavior of a single SAW on an ordinary lattice by th
of a gas of SAWs with the same interactions on a suita
cactus tree~Husimi tree!. The analysis of the latter system
can be performed exactly@11,12#. We choose a Husimi tree
made up of squares, to approximate the two-dimensio
~2D! square lattice, and one made up of cubes, to appr
mate the 3D simple cubic lattice, with a connectivity co
stant equal to 2 in both cases. We work out the gra
canonical phase diagram~chemical potential vs temperature!
for two different cases, in the low and high stiffness regim
respectively. Moreover, we investigate the dilute soluti
~single chain! limit, reporting the polymer density and con
figurational entropy as a function of temperature. Finally,
dilute solution limit is characterized in full detail by dete
mining the stiffness vs temperature and stiffness vs entr
phase diagrams. The former is compared to Monte Ca
simulations for the 3D case@9,10#, showing that the cactus
approximation recovers a qualitatively correct phase beh
ior. Moreover, we compare our results with previously p
formed mean-field-like investigations: the ordinary mea
field theory @8# and the Bethe approximation@13,14#. The
©2002 The American Physical Society02-1
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FIG. 1. Growth procedure to
build the square cactus:~a! first-
generation branch;~b! second-
generation branch; ~c! third-
generation branch. Binary
numerals denote different sites i
each square, according to the co
vention explained in the text.
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Bethe approximation is a classical tool of statistical mech
ics, which improves the ordinary mean-field theory, treat
exactly nearest neighbor correlations@15#. It has been refor-
mulated under different points of view@16–18#, but is actu-
ally equivalent, apart from details, to the cactus approxim
tion for a Cayley tree@19#, a special case of Husimi tre
made up of nearest neighbor pairs. As far as the semiflex
model is concerned, the ordinary mean-field approach d
not describe satisfactorily the high stiffness regime, and d
not predict the direct coil-anisotropic transition. The Bet
approximation yields a qualitatively correct phase diagr
with two different regimes@13#, but introduces some arti
facts. For example, theQ collapse is absolutely unaffecte
by stiffness. On the contrary, the cactus approximation c
rectly recovers also the stiffness dependence of theQ tem-
perature, which turns out to increase upon increasing s
ness, in agreement with Monte Carlo simulations.

The paper is organized as follows. In Sec. II, we descr
the semiflexible model in some more detail, and introdu
the cactus approximation, which in principle should work f
a generic interacting SAW model on ad-dimensional hyper-
cubic lattice. In Sec. III, we present the results, showing
grand-canonical~chemical potential vs temperature! phase
diagram, both in the low and high stiffness regimes, and
dilute solution phase diagrams. 3D results are compared
to 2D ones and to previous investigations on the semiflex
model. Section IV is devoted to a summary of the results
to some concluding remarks.

II. THE MODEL AND THE CACTUS APPROXIMATION

Let us consider a SAW on a hypercubic lattice ind di-
mensions. Each site visited by the walk represents a mo
mer. Empty sites represent clusters of solvent molecules
attractive energy2« ~with «.0) is assigned to each pair o
nonconsecutive monomers placed on nearest neighbor s
According to the grand-canonical description, a chemical
tential m is associated to each monomer, while the solv
TABLE I. Correspondence between local config
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chemical potential is conventionally assumed to be zero.
energy costx ~with x.0) is taken into account for eac
visited site in which the polymer bends. Thex parameter is a
way of describing polymer stiffness, therefore, it will be r
ferred to as stiffness parameter in the following.

Let us now introduce the cactus approximation. Basica
it consists in replacing the single SAW on the ordinary latt
by a gas of mutually avoiding and self-avoiding walks wi
the same interactions on a suitable Husimi tree~cactus tree!.
Dealing with a hypercubic lattice ind dimensions, we choose
a cactus made up ofd-dimensional hypercubes (d cubes!,
with a connectivity constant equal to 2~each site shared by 2
d cubes!. The cactus tree may be obtained as the result o
recursive growth procedure. Figure 1 shows the growth o
branch of our cactus tree for thed52 case, which is usually
referred to as square cactus. With a connectivity cons
equal to 2, the complete cactus is made up of two s
branches. A three- or higher-dimensional cactus can be
tained by a similar procedure.

The state of the system can be defined by specifying,
each lattice site,~i! whether the site is empty or visited by
walk and, in the latter case,~ii ! the chain configuration on
that site, that is, the directions of two segments~towards the
previous and next monomer along the chain!. It is then useful
to introduce for each site a suitable state variables. The
correspondence between values ofs and local~site! configu-
rations can be chosen arbitrarily. In Table I, we report o
‘‘encoding’’ for d52. Let us notice thats50 corresponds to
an empty site ands.0 to an occupied site. Moreover,s
<2 denotes a ‘‘straight’’ segment, whiles.2 denotes a
‘‘bent’’ segment. The encoding can be easily extended tod
53, so we do not report it explicitly for the latter case. L
us notice that, in order to preserve polymer connectivity, s
state variables have to satisfy certain constraints. Namel
two given sites are nearest neighbors, and the configurati
state of the former is such that it is linked~not linked! to the
latter by a chain segment, then also the latter site must b
urations and values of the site state variable ind52.
2-2
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TABLE II. Pair interaction energiesux(s,s8) ~a! anduy(s,s8) ~b! in d52. Notice thats8 follows s along each axis;ux(s,s8)5`
@uy(s,s8)5`# corresponds to pair statess,s8 that violate the connectivity constraint along thex ~y! axis.

s8 0 1 2 3 4 5 6
s ~a! ~b! ~a! ~b! ~a! ~b! ~a! ~b! ~a! ~b! ~a! ~b! ~a! ~b!

0 0 0 ` 0 0 ` 0 0 ` 0 ` ` 0 `

1 ` 0 0 2« ` ` ` 2« 0 2« 0 ` ` `

2 0 ` ` ` 2« 0 2« ` ` ` ` 0 2« 0
3 ` ` 0 ` ` 0 ` ` 0 ` 0 0 ` 0
4 0 ` ` ` 2« 0 2« ` ` ` ` 0 2« 0
5 0 0 ` 2« 2« ` 2« 2« ` 2« ` ` 2« `

6 ` 0 0 2« ` ` ` 2« 0 2« 0 ` ` `
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a linked ~not linked! state with respect to the former. Suc
condition can be imposed by assigning infinite energy p
alties to nearest neighbor pair states that violate the con
tivity constraint~infinite energies can be treated numerica
as vanishing Boltzmann weights!. The self-avoiding condi-
tion is guaranteed by the set of site configurations~Table I!,
which does not include self-crossing. One more constrain
be satisfied is the absence of closed loops on everyd cube of
the Husimi tree, otherwise the model would describe a m
ture of infinite length polymers and of small closed-lo
molecules, with different thermodynamic properties. Also
last condition can be imposed by suitable infinite energy p
alties.

Let us now show, how we can investigate the SAW gas
the class of cactus trees defined above. We shall take
square cactus as an example, then we shall see that a
mally equivalent method can be employed for any dim
sion. The HamiltonianH of the system~which includes in-
teraction energies, bending energies, chemical pote
contributions, and also the fictitious energies needed to
pose the constraints! can be written as a sum over the squa
in the following way:

H5(
m

H~$sk
(m)%!, ~1!

where H($sk
(m)%) is the contribution of themth square

~square Hamiltonian!, and

$sk
(m)%[$s00

(m) ,s01
(m) ,s10

(m) ,s11
(m)% ~2!

denotes the set of state variables in the square. Notice
state variables have a double label:m indicates that a vari-
able refers to a site in themth square, whilek[kxky
500,01,10,11 denotes a particular site in the given squ
Assuming that square sides have unit length and the lo
left vertex is placed at the origin of a reference frame,kx and
ky are vertex coordinates. The square Hamiltonian can
written as
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H~$skxky
%!5

1

2 (
kxky500

11

h~skxky
!1 (

ky50

1

ux~s0ky
,s1ky

!

1 (
kx50

1

uy~skx0 ,skx1!1v~s00,s01,s10,s11!.

~3!

In the last equationh denotes site energy terms, which ta
into account bending energies and chemical potential con
butions. They are defined as

h~s!5xnb~s!2mno~s!, ~4!

where no(s) are ‘‘occupation’’ numbers, defined asno(s)
50 for s50 ~empty site!, no(s)51 otherwise~occupied
site!, while nb(s) are ‘‘bending’’ numbers, defined a
nb(s)50 for s<2 ~straight segment or empty site!, nb(s)
51 otherwise~bent segment!. Normalization to the connec
tivity constant 2 avoids multiple counting. Moreover,ux and
uy represent pair interaction energies along thex andy axes,
respectively~see Table II!. They take into account also con
nectivity constraints, as previously mentioned. Let us not
that the difference betweenux anduy does not correspond to
a real anisotropic interaction, but is due to the fact that s
states are defined with respect to a fixed reference fra
Finally, the four site termv takes into account that squar
loops are forbidden. It is defined asv(3,6,4,5)5`,
v(s00,s01,s10,s11)50 otherwise.

The thermodynamics of a cactus system can be inve
gated exactly, in a numerical way, taking into account se
similarity, that is, by solving a suitable recursion relatio
@20#. First one has to define partial partition function
~PPFs!. Let us consider a branch of our cactus tree, for
stance the one depicted in Fig. 1~c!, and a corresponding
partial Hamiltonian, obtained by Eq.~1! with the sum re-
stricted to squares in the branch. The corresponding P
W(s) can be computed by summing Boltzmann weights
the partial Hamiltonian over the states of the branch min
the base site, which is characterized by thes state variable.
Of course, the PPF tends to infinity in the thermodynam
limit, that is, for an infinite generation branch, so it is co
venient to define a normalized PPFw(s)}W(s) in such a
way that
2-3
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(
s

w~s!51. ~5!

From symmetry arguments it is easy to see that, if the b
site of the branch isk instead of0[00, the corresponding
PPF can be written as

wk~s!5w~Rks!, ~6!

whereRk is a ‘‘reflection’’ operator, which, acting on a sit
configurations, returns theRks configuration, obtained by
a reflection ofs with respect to the plane orthogonal to thek
vector. In Table III, we report explicit definitions of the re
flection operators. Let us notice that the following compo
tion rule holds:

RkRk85Rk % k8 , ~7!

where % denotes the ‘‘bit-per-bit’’ logical exclusive or~de-
fined by 0% 051% 150, 0% 151% 051). Let us now con-
sider again the branch depicted in Fig. 1. In the infinite g
eration limit, and in the hypothesis of a homogeneo
system, the subbranches attached to the first square o
branch should be equivalent to main one. So the corresp
ing PPFs do not depend on them ~square! label, and one can
write the recursion relation

w~s0!5g21 (
$sk%kÞ0

e2bH($sk%))
kÞ0

wk̄~sk!, ~8!

where the sum runs over state variables in the square ex
s0 , b51/KT (K being the Boltzmann constant andT the
absolute temperature!, a bar denotes the bit-per-bit logica
inversion~defined by 0̄51, 1̄50), andg is a normalization
constant, imposed by Eq.~5!. The recursion relation can b
iterated numerically to determine a fixed point, which rep
sents the PPF of a branch whose base site lies in the bu
the cactus tree. Bulk properties of the cactus system are
sumed to approximate the ordinary lattice system. For e
site k in a square, we can compute the probability distrib
tion pk(s) of the corresponding state variable, by consid
ing the operation of attaching two branches to the given s
We obtain

pk~s!5z21wk~s!wk̄~s!, ~9!

where of coursew0(s)[w(s), while

z5(
s

wk~s!wk̄~s! ~10!

provides normalization. Let us notice thatz turns out to be
independent ofk, due to Eq.~6!. The residualk dependence

TABLE III. Definition of reflection operatorsRk :s°Rks, in
d52. Notice thatR115R10R01 ~see the text!.

s 0 1 2 3 4 5 6

R10s 0 1 2 4 3 6 5
R01s 0 1 2 6 5 4 3
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of the site probability distributions does not break homog
neity, because, according to Eq.~6!, the following symmetry
relationship holds:

pk~s!5p0~Rks!. ~11!

Therefore, the probabilityr that a site is visited by a walk
which we shall briefly refer to asdensityin the following,
can be evaluated as:

r512pk~0!, ~12!

independently ofk. The densityr is the main order param
eter for our system.

We have described the recursive approach for a squ
cactus, that is, for thed52 case. Nevertheless, ford53, we
can develop a formally equivalent procedure, with the sa
equations, providedk denote cube vertices, that is,k
5000,001, . . . ,111, and the square Hamiltonian definitio
~3! is replaced by a suitable definition of cube Hamiltonia
Let us notice that ind53 a computer program which per
forms a single iteration of the recursion relation~8! should
consider in principle 16854 294 967 296 cube configuration
(16 being the number of possible site configurations, an
the number of vertices in a cube!, making the calculation
unfeasible. This huge number can be reduced to 3 746 97
from the beginning one takes into account only configu
tions respecting connectivity. A suitable algorithm has be
programmed to this purpose.

The starting values of the recursion relation repres
boundary conditions on the surface of the cactus trees. M
over, the fixed point represents the bulk equilibrium sta
and phase transitions can be detected in principle as cha
of the fixed point, driven by model parameters. In this wa
one determines the actual phase behavior of a cactus sys
Nevertheless, it is widely believed that in the presence
multiple fixed points~which can be reached from differen
boundary conditions!, that is, in the presence of coexisten
phenomena, the first-order transition which best appro
mates that of the ordinary lattice system can be obtained
minimizing the bulk free energy density@19,20#. For our
system, the suitable free energy density is the excess g
potential per sitev referred to pure solvent. Such a potent
can be evaluated as

v52KTF 1

2d21
ln g2S 12

1

2d21D ln zG , ~13!

whereg is the normalization constant of the recursion re
tion ~8! and z is given by Eq.~10!. The derivation requires
some manipulations and is left to the Appendix. From t
knowledge of the grand potential one can derive all ot
thermodynamic properties.

III. THE PHASE DIAGRAMS AND THE DILUTE
SOLUTION LIMIT

In the framework of a grand-canonical description, t
phase diagram can be determined as a function of temp
ture and chemical potential. For a SAW the latter controls
2-4
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average chain length. For example, in the simpleQ model
@5# there exists a phase transition linem5m* (T) at which
~for increasingm values! the average length either diverge
continuously~for temperatures higher than some temperat
TQ) or jumps discontinuously to infinity~for temperatures
lower thanTQ). The transition line is identified as the the
modynamic limit of an isolated chain in solution. The syste
can be also described in terms of the densityr, and one
obtainsr50 for m,m* (T) andr.0 for m.m* (T). From
the dense region of the phase diagram the transition line
be seen as the dilute solution limit~a single chain in solu-
tion!. The transition is second order forT.TQ and first order
for T,TQ . The tricritical point@TQ ,m* (TQ)#, known asQ
point, represents the coil-globule collapse. Let us notice t
in our description, walks cannot terminate except on the
tice boundaries~see Table I!, hence in the thermodynami
limit polymers are infinite in length even in the zero dens
phase. This is not expected to affect the phase behavior o
equilibrium system. We now present grand-canonical ph
diagrams of the 2D semiflexible model in the cactus appro
mation for a low stiffness case (x/«51) and a high stiffness
case (x/«55), which show qualitatively different behavior

Let us consider the low stiffness case first. The ph
diagram is displayed in Fig. 2~upper graph!, where the tem-
perature variable isKT/« and the chemical potential variab
is m/«. We find three different phases: the zero density~Z!

FIG. 2. Chemical potential-temperature (m/« vs KT/«) phase
diagram ind52 for a low stiffness case (x/«51, upper graph! and
a high stiffness case (x/«55, lower graph!. Solid lines denote
first-order transitions; dashed lines denote second-order transit
The zero density phase (r50) is denoted byZ, the isotropic dense
phase (0,r,1) by ID, and the anisotropic saturated phaser
51) by AD.
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phase, the isotropic dense~ID! phase, and the anisotropi
dense~AD! phase. TheZ phase is characterized byr50 and
v50. Let us notice that the excess grand potential was
pected to vanish in theZ phase, in which only a vanishing
fraction of sites is visited by a walk. In the remainder of t
article, we shall understand that all thermodynamic qua
ties are excess quantities referred to pure solvent. The
phase is characterized by 0,r,1, and corresponds to th
dense phase of the ordinaryQ model. In the cactus approxi
mation, we say that the ID phase is ‘‘isotropic,’’ meaning th
the probability of having a straight segment is independen
the direction, that ispk(1)5pk(2). Otherwise, the system
does not possess a real invariance under 90° rotation, du
the cactus structure itself. The AD phase is anisotropic, in
sense thatpk(1)Þpk(2), and saturated (r51), that is, it
describes a Hamiltonian walk. Most sites are occupied
chain segments aligned to a coordinate axis. The transi
line between theZ and ID phases turns out to be partial
first and partially second order. The two regimes are se
rated by a tricritical point, which is an ordinaryQ point. In
the dense region (r.0) a first-order transition line separate
the ID and AD phases. As far as the high stiffness cas
concerned, the phase diagram is reported in the lower gr
of Fig. 2. The same three phasesZ, ID, and AD discussed
above are present, even if the topology of the phase diag
is different. TheZ-ID transition line is totally second order
so the tricritical point disappears, and is replaced by a crit
end point. This corresponds to a discontinuous collapse,
stead of the ordinary~continuous! Q collapse.

As previously mentioned, we are mainly interested in t
dilute solution limit, that is, in the transition between theZ
phase and the dense phases, because it describes a
chain in solution. So we shall give more detailed resu
about this issue. The densityr, computed in the limit ofm
tending to the transition line from above, which denotes
chain compactness, is reported in Fig. 3 as a function
temperature. In the high stiffness (x/«55) case, one finds a
single abrupt transition fromr51 to r50, upon increasing
temperature. In the lower temperature region the polyme
in the anisotropic~A! compact state, while in the higher tem
perature one the polymer is in the swollen coil~C! state. The
low stiffness case (x/«51) displays three different phase
The lowest temperature one isA, like in the high stiffness

ns.

FIG. 3. Density as a function of temperature (r vs KT/«) in the
dilute solution limit in d52 for the low (x/«51) and high (x/«
55) stiffness cases.
2-5
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case. At some temperature the system undergoes a first-
transition, in which the chain becomes orientationally dis
dered, but its density does not fall down to zero. This ph
may be identified with the ordinary compact globule~G!
observed in theQ model. Upon further increasing temper
ture, the density decreases continuously, reaching zero a
ordinary Q point, after which the polymer is again in aC
state.

We also investigate the temperature dependence of
entropy per monomer in the dilute solution limit. It can b
computed in the following way. The grand potential per s
can be written as

v5 f 2mr, ~14!

wheref is the Helmholtz free energy per site. As previous
mentioned,v vanishes on theZ phase boundary, hence i
this case,m coincides with the Helmholtz free energy p
monomer,

m5 f /r, ~15!

for a single chain in solution. Assuming that

m/«5w~KT/«! ~16!

defines theZ phase boundary~which is known numerically,
see Fig. 2!, we can derive the entropy per monomer as

s/r52Kw8~KT/«!, ~17!

wherew8 denotes the first derivative ofw. The entropy, nor-
malized toK, is displayed in Fig. 4 as a function of temper
ture. Let us notice that in theA state the entropy is low, bu
not zero. In the low stiffness case it jumps to a higher va
in the G state, reflecting orientational disordering, then
increases on increasing temperature. The slope beco
abruptly lower at theQ point. On the contrary, in the high
stiffness regime, there is a direct jump to the high entro
value associated to the highly disorderedC state.

All the qualitative features, we have described for the t
regimes observed ind52 are preserved ind53, so we do

FIG. 4. Entropy per monomer as a function of temperat
(s/Kr vs KT/«) in the dilute solution limit ind52 for the low
(x/«51) and high (x/«55) stiffness cases.
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not report the corresponding graphs. Rather let us notice
the dilute solution behavior is in qualitative agreement w
Monte Carlo simulations of a single semiflexible chain on
3D ~simple cubic! lattice @9,10#. This supports the reliability
of the cactus approximation in the analysis of lattice polym
models. On the contrary, the classical mean-field appro
was not able to describe the first-order collapse in the h
stiffness regime@8#. The Bethe approximation, equivalent
the cactus approximation for a Cayley tree, does describe
two regimes, but has been shown to introduce some artif
@13#. For example, the anisotropic phase turns out to be c
pletely frozen, that is, all lattice sites are occupied by strai
segments aligned to a coordinate axis, and the entrop
rigorously zero even at finite temperature. As shown abo
the cactus approximation predicts a nonvanishing entro
which suggests that it is capable of describing some deg
of ~local! disorder even for the saturated phase.

In order to perform a more detailed comparison w
Monte Carlo simulations@9,10#, we now systematically char
acterize the dilute solution behavior, by investigating a co
tinuous range of values of the stiffness parameter. Let us s
again fromd52. Figure 5 shows the phase diagram as
function of stiffness and temperature. The two regimes
be easily recovered, and, quantitatively, we find the bound
of the low stiffness regime atx/«'3.29. Let us notice that
for very low stiffness values, theA-G transition line seems
to disappear. Actually in this region the convergence of
recursion relation is very slow, which suggests the prese
of a tricritical point and of a subsequent critical transitio
This is shown more clearly by the corresponding stiffne
entropy phase diagram~Fig. 6!, where the entropies of theA
and G phases tend to coincide, asA becomes less and les
anisotropic, and structurally similar toG. Such behavior is a
peculiarity of the d52 case. For d53 the stiffness-
temperature phase diagram is reported in Fig. 7, toge
with the results of Monte Carlo simulations@9,10#. The
qualitative agreement is good, even if, from a quantitat
point of view, the cactus approximation overestimates~as all
mean-field-like approximations! the stability of the more or-
dered phase. Nevertheless, it is remarkable that the ca

e

FIG. 5. Stiffness-temperature (x/« vs KT/«) phase diagram in
the dilute solution limit ind52. Solid lines denote first-order tran
sitions; a dashed line denotes theQ transition. The coil phase is
denoted byC, the isotropic globule phase byG, and the anisotropic
phase byA.
2-6
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SEMIFLEXIBLE POLYMER IN THE CACTUS APPROXIMATION PHYSICAL REVIEW E66, 061802 ~2002!
approximation is also able to reproduce, though not qua
tatively, the increasing trend of theC-G transition (Q) tem-
perature as a function of stiffness. As far as this issue
concerned, let us remind that both the classical mean-fi
approach and the Bethe approximation predict a rigorou
stiffness independentQ temperature. Finally, Fig. 8 show
the stiffness-entropy phase diagram ford53. It turns out to
be qualitatively different from the correspondingd52 dia-
gram, in that theA-G transition clearly does not tend t
criticality even for vanishing stiffness, as the correspond
entropies are significantly different. Such a detail seems
suggest that the cactus approximation is also capable of
criminating dimension dependent effects.

IV. CONCLUSIONS

We have investigated a cactus approximation for a lat
polymer model with attractive short range interaction a

FIG. 6. Stiffness entropy per monomer (x/« vs s/Kr) phase
diagram in the dilute solution limit ind52. Thick solid lines de-
note boundaries of pure phase regions; a dashed line denotesQ
transition. A thin solid line denotes the critical end point; a da
dotted line denotes the athermal limitT→`. Tags are as in Fig. 5
Double tags denote coexistence regions.

FIG. 7. Stiffness-temperature (x/2« vs KT/2«) phase diagram
in the dilute solution limit ind53. Circles and squares deno
results of the Monte Carlo simulations of Refs.@9,10#, respectively.
Thin lines are eye guides. Other lines and tags are as in Fig. 5
06180
ti-

is
ld
ly

g
to
is-

e
d

stiffness. The semiflexible model has been already inve
gated by means of different techniques, and has been
gested to have some relevance also in the description
some biopolymer properties. In this paper, we have con
ered the performance of the cactus approximation in
analysis of such model. The method turns out to requir
reasonable computational effort also in 3D, yielding quali
tively correct results, compared to more accurate techniq
Moreover, it allows one to study phase diagrams and th
modynamic properties in full detail, due to relatively sma
numerical complexity.

The model shows two qualitatively different behavior
depending on stiffness. For high stiffness values, a polym
in dilute solution undergoes a first-order collapse from
swollen coil at high temperature to an extremely comp
anisotropic state at low temperature. Lower stiffness val
yield a qualitatively different behavior. Upon increasing tem
perature the polymer chain undergoes two phase transiti
from the anisotropic state to an isotropic globule, and th
from globule to coil (Q transition!. The cactus approxima
tion qualitatively reproduces the two different behaviors. F
both cases, we have computed the most relevant therm
namic functions, namely, the Helmholtz free energy and
tropy per monomer as a function of temperature.

We have compared our results for the dilute solution lim
with those of Monte Carlo simulations, and of other mea
field like approximations. The classical mean-field approa
does not succeed in describing the first-order collapse at
stiffness values. The Bethe approximation does describe
regimes, but introduces artifacts. First of all, the anisotro
phase turns out to be completely frozen even at finite te
perature, with all chain segments aligned to a privileged
rection, and zero configurational entropy. On the contra
the cactus approximation predicts a nonvanishing entro
that is, some degree of configurational disorder. Moreov
both the mean-field theory and the Bethe approximation p
dict a rigorously stiffness independentQ collapse tempera-
ture, while, remarkably, the cactus approximation qualitav

- FIG. 8. Stiffness entropy per monomer (x/2« vs s/Kr) phase
diagram in the dilute solution limit ind53. Lines and tags are as i
Fig. 6.
2-7
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M. PRETTI PHYSICAL REVIEW E 66, 061802 ~2002!
reproduces the increasing trend of the transition tempera
upon increasing the stiffness parameter. Finally, the 2D c
tus approximation displays a peculiarity in the anisotrop
isotropic transition, which tends to criticality for ti very low
stiffness. Therefore, the cactus approximation turns out to
sensitive to dimensionality, while the Bethe approximati
seems to be quite insensitive, predicting an all first-or
transition line also in two dimensions.

On the basis of these results, we suggest that the ca
approximation may be a reliable tool to get qualitative info
mation about the thermodynamics of lattice polymer mod

APPENDIX: BULK FREE ENERGY DENSITY

In this appendix, we explain the formula employed in t
text to evaluate the bulk free energy density. It is known t
the contributionF of each ~bulk! d cube to the total free
energy can be written exactly as@20#

bF5K bH~$sk%!1 ln P~$sk%!2
1

2 (
k

ln pk~sk!L ,

~A1!

where^•& denotes an ensemble average over thed-cube state
variables, andP($sk%) is the joint probability distribution of
such variables. Let us notice that hereF denotes a generic
free energy, not necessarily the Helmholtz one. It is eas
see that

P~$sk%!5Z21e2bH($sk%))
k

wk̄~sk!, ~A2!

where

Z5(
$sk%

e2bH($sk%))
k

wk̄~sk! ~A3!

provides normalization. Replacing Eq.~A2! and Eq.~9! into
Eq. ~A1!, and taking into account the linearity of the avera
operation, one obtains

bF52 ln Z1
1

2 (
k

ln z1
1

2
F, ~A4!

where
06180
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F5(
k

K ln
wk̄~sk!

wk~sk!L . ~A5!

By expanding the statistical average, the last term reads

F5(
k

(
s

pk~s!@ ln wk̄~s!2 ln wk~s!#. ~A6!

Due to the fact that the sum is taken over allk, one can also
write

F5(
k

(
s

@pk̄~s!2pk~s!# ln wk~s!. ~A7!

From Eq.~9!, it is easy to see that

pk̄~s!5pk~s!, ~A8!

whenceF50. As a consequence, Eq.~A4! in d dimensions
reads

bF52 ln Z12d21ln z. ~A9!

Let us notice thatZ involves a sum over alld-cube state
variables, hence it is quite expensive to be computed num
cally for d53. Nevertheless, making use of Eqs.~A3!, ~8!,
and ~10!, it is possible to show that

Z5gz, ~A10!

whereg is the normalization constant of the recursion re
tion ~8!, which has to be computed at each iteration. Mo
over, as previously mentioned,F is actually the free energy
density perd cube, related to the free energy density per s
f by

F52d21f ~A11!

~eachd cube contains 2d sites, but each site is shared by 2d
cubes!. Thus, one can finally write

b f 52
1

2d21
ln g1S 12

1

2d21D ln z. ~A12!
s
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